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We exhibit a polynomial dynamical system where one cannot decide whether a 
Hopf bifurcation occurs. Therefore one cannot decide whether there will be 
parameter values such that a stable fixed point becomes an unstable one. 
Related incompleteness results for previously described axiomatized versions of 
dynamical systems theory are also discussed. 

1. I N T R O D U C T I O N  

In  1974 the A m e r i c a n  Ma thema t i ca l  Society o rgan ized  a sympos ium to 
evalua te  the s ta te  o f  the so lu t ion  o f  Hi lbe r t ' s  p rob lems  o f  1900. A new list 
o f  p rob l ems  was d rawn  up at  the  sympos ium to represent  the  con tempo-  
rary  view a b o u t  the ma in  t rends  in mathemat ics .  A r n o l d  (1976) con t r ibu ted  
the fol lowing queries to the po r t i on  tha t  dea l t  wi th  dynamica l  systems 
theory  in tha t  new list: 

Is the stability problem for stationary points algorithmically decidable? The 
well-known Lyapunov theorem solves the problem in the absence of eigenvalues 
with zero real parts. In more complicated cases, where the stability depends on 
higher order terms in the Taylor series, there exists no algebraic criterion. 
Let a vector field be given by polynomials of a fixed degree, with rational 
coefficients. Does an algorithm exist, allowing to decide, whether the stationary 
point is stable? 
A similar problem: Does there exist an algorithm to decide, whether a plane 
polynomial vector field has a limit cycle7 
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A m o r e  d e t a i l e d  s t a t e m e n t  o f  t hose  p r o b l e m s  was  r ecen t ly  c o m m u n i -  

c a t e d  to  the  a u t h o r s  by  A r n o l d  (personal communication, 1992): 

In my problem the coefficients of the polynomials of known degree and of a 
known number of variables are written on the tape of the standard Turing 
machine in the standard order and in the standard representation. 
The problem is whether there exists an algorithm (an additional text for the 
machine independent of the values of the coefficients) such that it solves the 
stability problem for the stationary point at the origin (i.e., always stops giving 
the answer "stable" or "unstable"). 
I hope, this algorithm exists if the degree is one. It also exists when the 
dimension is one. My conjecture has always been that there is no algorithm for 
some sufficiently high degree and dimension, perhaps for dimension 3 and 
degree 3 or even 2. I am less certain about what happens in dimension 2. 
Of course the nonexistence of a general algorithm for a fixed dimension working 
for arbitrary degree or for a fixed degree working for an arbitrary dimension, or 
working for all polynomials with arbitrary degree and dimension would also be 
interesting. 
Integers were introduced in the formulation only to avoid the difficulty of 
explaining the way the data are written on the machine's tape. The more 
realistic formulation of the problem would require the definition of an analytic 
algorithm working with real numbers and functions (defined as symbols). The 
algorithm should permit arithmetical operations, modulus, differentiation, inte- 
gration, solution of nondifferential equations (also for implicit functions in 
situations where conditions for the implicit function theorems are violated), 
exponentiation, logarithms, evaluation of 'computable' functions for 'com- 
putable' arguments. 
The conjecture is that with all those tools one is still unable: 

1. To solve the general stability problem starting from the right hand side 
functions as symbols with which one may perform the preceding opera- 
tions. 

2. To solve the above problem for polynomial vectorfields with real or 
complex coefficients. 

3. To solve them with integer coefficients. 
However as far as I know there are no words in logic to describe the above 
problem and I have thus preferred to stop at the level of algorithms in the usual 
sense rather than to try to explain to logicians the meaning of the impossibility 
of the solution of differential equations of a given type by quadratures (e.g., in 
the LiouviUe case in classical mechanics or in the theory of second order 
ordinary differential equations). The main difficulty here is that the solvability 
or unsolvability should be defined in a way that makes evident the invarianee of 
this property under admissible changes of variables defined by functions that 
one can construct from the right hand side of the equations in a given 
coordinate system. In other terms we should explicitly desga'ibe the struoture of 
the manifold where the vectorfield is given, with respect to which the equation 
is nonintegrable. 
In the usual approach this structure is a linear space structure, and I think it is 
too restrictive. 
In any case I would like to know whether you think you have proved my 
conjectures on polynomial vectorfields with integer coefficients: 
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�9 For some pair (degree, dimension); 
�9 For some dimension; 
�9 For some degree, 

the polynomials being given on the tape of the machine in the standard form. If 
one of those undecidability conjectures is proved, it would be interesting to 
know for which pair (degree, dimension), or value of the dimension or value of 
the degree is the undecidability proven. 

We give here an example related to those questions. Specifically, we 
exhibit a polynomial dynamical system where the origin is a fixed point but 
such that we cannot algorithmicaUy decide whether a bifurcation related to 
the H o p f  bifurcation occurs. That  example leads us to the concluding 
question in Arnold's  original formulation: 

A similar problem: Does there exist an algorithm to decide, whether a plane 
polynomial vector field has a limit cycle? 

The solution should obey, according to Arnold, the following proce- 
dure: 

In my problem the coefficients of the polynomials of known degree and of a 
known number of variables are written on the tape of the standard Turing 
machine in the standard order and in the standard representation. 
The problem is whether there exists an algorithm (an additional text for the 
machine independent of the values of the coefficients) such that it solves the 
[required] problem. 

[See above for the complete quote; a full discussion of  the whole set of  
problems, together with the underlying mathematical  machinery, appears 
elsewhere (da Costa et al. (1993b).] 

We first show in the present paper  that there is no general algorithm 
to decide, for an analytical dynamical system, whether a H o p f  bifurcation 
occurs. 

Second, we build out of  the first example a dynamical system which is 
polynomial over Z and which turns out to be a particular perturbation of  
a set of  harmonic oscillators. We use that system to prove that we cannot 
algorithmically decide whether there will be parameter  values so that a 
stable fixed point at the origin will become an unstable one when the 
system is polynomial. 

We also discuss related incompleteness phenomena. 

2. MAIN T O O L S  

Main references are two previous papers of  ours (da Costa and Doria,  
1991a; da Costa et al., 1993a). We can think about  our intuitive mathemat-  
ical setting as a theory T ~_ ZFC,  where ZFC denotes Zermelo-Fraenke l  
set theory plus (at  least the countable) Axiom of  Choice. 
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Notation is as usual. In particular co are the natural numbers; Z are the 
integers, and R are the reals. We need a well-known result by Richardson 
(1968) as improved by Caviness (1970). I f f  is a function, the expression 
that represents f i n  our discussions is denoted I - f ]  . W e  consider the set of 
all expressions [-~'n ] for real-valued elementary functions over R"; the 
corresponding set of  functions is denoted ~ , .  We begin: 

Defin i t ion  2.1. g ~ is a dominat ing  f u n c t i o n  for f ~ ' ,  if: 
1. For all real xz . . . . .  x , , g ( x l  . . . .  , x , )  > 1. 
2. For all real xl . . . . .  x~ and all real [A;[ < 1, i = 1 . . . . .  n then 

g(Xl . . . . .  Xn) > f ( X l  "u A i . . . . .  Xn + An) 

L e m m a  Z2. I f f e  ~ then we can explicitly and algorithmically con- 
struct an expression I-g] that represents a dominating function g for f (da 
Costa and Doria, 1991a; Richardson, 1968). 

Propos i t ion  2.3. If  [p (m ,  x l , . . . , x , ) 7 e [ - ~ - , ] ,  meco, is a family of  
polynomial expressions over Z parametrized by m, then we can explicitly 
and algofithmically construct an expression [ - f ] ~ [ - ~ , ]  for a function f 
such that: 

1. For all x l , .  � 9  x ,  ~co, p (m ,  X l , .  . . ,  x , )  ~ 0 if and only if for all 
nonnegative x l  . . . ~ 8 ,  f ( m ,  Xl ,  . . . , x , )  > 1. 

2. There are X l , . . . ,  x,  ~co so that p(m ,  Xl . . . . .  x,)  = 0 if and only if 
there are nonnegative xl,  �9 �9 �9 x,  e R so that f ( m ,  Xl . . . .  , x , )  = 0 
and if and only if there are nonnegative X l , . . . ,  x,  ~ R so that 
0 < f ( m ,  x l , . . . , x , )  < 1. 

Proof .  See Caviness (1970) and Richardson (1968). We give the 
explicit form for such an expression for f :  

[ - f (m,  x i ,  . . . , x , ) ]  = (n + 1)Zl pZ(m,  x l , .  . . , x , )  

+ i=,  ~ sin2 l rx ,g~(m,  X l , . . o  ) X,)]  

Here the g; are expressions for dominating functions of  (O/Oxl)p 2. ca 

R e m a r k  2.4. The whole thing is pretty simple: f remains strictly greater 
than 1 on the positive side of Iq if and only if the Diophantine equation 
p = 0 has no roots over the naturals co; f will drop to 0 if and only if p = 0 
has at least one root. 

We can also state: 

Corol lary  2.5. If  ['p(m, x l  . . . . .  x , )  ] E [ ' ~ ,  ], m t c o ,  is a family of  poly- 
nomial expressions over Z parametfized by m, then we can explicitly and 
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algorithmicaUy construct an expression [-F7z[-~,7 for a function F such 
that: 

1. For  all x l ,  . . . ,  x ,  ea~, p(m, Xl . . . . .  x , )  # 0 if and only if for all 
xl �9 �9 �9 eR ,  F(m, x l , .  �9 . , x , )  > 1. 

2. There are x l , . . . ,  x,  eco so that p(m, x l , . . . ,  Xn) = 0 if and only if 
there are x l , . . . , x ,  e lq so that F(m, x l , . . . , x , ) = 0  and if and 
only if there are x ~ , . . . ,  x,  s R so  that 0 < F(m, x ~ , . . . ,  x , )  < 1. 

Proof. See Caviness (1970) and Richardson (1968). Again we give the 
explicit form for such an expression for F: 

['F(m, xl . . . . .  x,)7  = f ( m ,  x 2 , . . . ,  x 2) �9 

Corollary 2.6. There is no general algorithm to decide, for an expres- 
sion [ -hTe~,  and for any value of the variables of h, whether h > 1 or 
h > 0 (so that h = 0 sometimes). 

Proof. Make p equal to a universal polynomial in Proposition 
2.5. �9 

The previous results lead to an explicit expression for the halting 
function in the theory of  Turing machines. Richardson (1968) proves the 
following two results: 

Corollary 2.Z We can explicitly and algorithmically construct an 
expression [ c l  for a function in r~.l=F~.lul... 1, where I . . .  l is the 
absolute value function (I-f#,] denotes the set of  expressions for ~ ' ,  to 
which we add 1"-" I and close everything with respect to it), such that: 

1. p(m, x ~ , . . . ,  x , )  = 0 has roots over co if and only if there are real 
numbers so that c(m, x~ . . . . .  x , )  > O. 

2. p(m, x~ . . . . .  x , )  = 0 has no roots over o~ if and only if, for all reals, 
c(m, x l ,  . . . , x , )  =0 .  

Proof  Put 

c(m, x) = If(m, x) - 1 [ -  ( f (m ,  x) - 1) 

Here x =  <Xl . . . .  , x ,> .  �9 

Corollary 2.8. We can explicitly and algorithmically construct an 
expression I-el for a 1-variable function in [ f ~ 7  = [?~ ' lqw[ . . .  [ such that: 

1. p(m, x l , . . . ,  x , )  = 0 has roots over a~ if and only if there are real 
numbers x so that c(m, x) > O. 

2. p(m, x ~ , . . . ,  x , )  = 0 has no roots over a~ if and only if, for all real 
x, c(m, x) = O. 

(Here we deal with a real-valued 1-variable function.) 



1890 da Costa and Doria 

Proposition 2.9 (The Halting Function). We can explicitly and al- 
gorithmically construct an expression O(m, n) for the halting function in the 
theory of Turing machines within the language of classical elementary 
analysis. O(m, n) satisfies: 

1. O(m, n) = 1 if and only if the machine Mm(n) halts. 
2. O(m, n) = 0 if and only if the machine M,,(n) never halts. 

[M,,(n) is the machine of index m that takes n as its input.] 

Proof. One possible (multidimensional) representation f t r  0 is given 
by 

where 

O(m) = tr(K(m)) 

r 
K(m) = | c(m, x)e -x2 dnx 

dR n 

c(m,x) is given through Corollary 2.3, o" is the sign function, 
x2= x~ + . . .  + x~, and d"x is the volume element. To go from O(m) to 
O(m, n)it is enough to use the inverse of the usual pairing function ~. A 
one-dimensional representation for 0 is given with the help of the integral 
K(m) = SR c(m, x ) e x p ( - x  2) dx, where c(m, x) comes from Corollary 2.8. 
For other representations for the halting function see da Costa and Doria 
(1991a). 

Remark 2.10. Notice that our constructions for 0 suggest that the 
proper setting for those functions is a separable Hilbert space. 

3. AN UNDECIDABLE HOPF BIFURCATION 

We must now carefully distinguish between the two levels where our 
discussion proceeds: 

�9 The intuitive, mathematical level. When we deal with the actual 
properties of a given dynamical system, we argue with the tools 
available in the toolbox of everyday mathematics. 

�9 The formal, metamathematical level. Those tools can be formalized 
within a classical set-theoretic first-order language. At the second 
level we argue about the formal system realized in that language; the 
formal system (or portions of it) will be the object of our discus- 
sions. 

Undecidability and incompleteness proofs are given here. 
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3.1. The Intuitive Level 

We start at the intuitive level. 
For a review of the Hopf  bifurcation see Hopf  (1942), Howard (1975), 

Marsden and McCracken (1976), and Ruelle and Takens (1971). We deal 
here with a polynomial autonomous dynamical system with coefficients in 
Z over an adequate finite-dimensional manifold R k x M. 

Example  3.1. Let us be given the following infinite denumerable family 
A(m) of  polynomial dynamical systems over Z, parametrized by #m, m ~Co, 
and defined on an adequate R k x M: 

d~ 
, i t -  ~ + ~(#m- ~2-'f) 

(1) 
a~=~+~0~_~  ~21 
dt 

dy, 
dt cwizi 

dz~ (2) 
- -  = - -  c w l y  i 

dt 

dxi 

dt 
dwi (3) 
dt - - xi 

dc 
= 0. (4) 

(i = 1, 2, 3 . . . . .  n and k = 4n + 3.) Here, 

. . . .  ,x~, y ~ , . . . ,  y n ) =  - t ( n +  1)2/q2(m , x~ . . . . .  xn) /Zm(Xl 

Yig i  (m, X l , . . . ,  X~ (5) 
i = l  

q will just be specified; however, see Proposition 2.3. g~ is the dominating 
polynomial for (a/axi)q as in that same proposition (with respect to p). 

We will specify below 

q(m . . . . .  x l , x = i , x ~ , x  4 . . . .  ) = p  m . . . . .  1 E (x{)2, " '"  

p will turn out to be an adequate Diophantine universal polynomial; q 
will have (if any) solutions over Z. 

Finally, for notational simplicity we put q = q(m, x~ . . . . .  x~). 
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Relevant initial conditions will be explicitly added when required. 
System A(m) is built out of three pieces: equations (1) are a classical 

example for the Hopf  bifurcations; equations (2) and (3) describe harmonic 
oscillators, while the single trivial equation (4) introduces (with the help o f  
an adequate initial condition) the constant n in the expression we gave for 
#m. We take M = {0) u {n) as the range of the orbits in the last equation. 

We state and prove the main result in this subsection: 

Proposition 3.2. For system A(m): 

1. The origin 0~R k x M is an isolated critical point. 
2. If #m < 0, then the origin is asymptotically stable. 
3. If  #m > 0, then the origin is unstable. 

Proof. First assertion is immediate. For the second assertion, consider 
the Lyapunov function: 

V=(I/2)[{2+t12+c2+~.,, (y] +z~ +x~  + w ~ ) ]  

whereas, 

Then, for f" ~< 0, as ~2+ ~/2> 0 as close to zero as we wish, we get 
#m < 0. As IZ m may range over the negative reals, the system will satisfy 
f" < 0 near the origin for the strict inequality #m < 0. Thus /z,~ < 0 is a 
sufficient condition for the stability of the system A(m). 

We must now discuss the case #m > 0. 
First, a remark: 

Remark 3.3. A phase portrait for A(m) is complicated. Sketchily, we 
have: depending on m, either ~m ranges over ( -  ~ ,  0) or over ( -  ~ ,  1]. 
The values of/~,~ are determined by the oscillations of the xi, which are 
always bounded. Then: 

�9 If/~m ~ ( - - ~ ,  0), then for a given set of initial conditions for the xi 
the parameter /Zm will remain within a bounded interval I on the 
negative real line. The (projected) orbits of equations (1) will be 
smooth deformations of the orbits one has for a fixed value of #m 
inside I. That argument is valid for all xi, so that there is no 
instabilizing of 0. 

�9 However, if/~m ~ ( -  ~ ,  1), there will be a set of initial conditions for 
the xi so that /z m EJ ~ (0, 1]. Here again a continuity argument 
shows that there is an attracting circle and an unstable origin for 
that particular orbit, just as in the Case of a constant #m ~J. 

Thus the origin is unstabilized. 
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We can argue about A(m) out of the simpler system A'(m) given by 
equations (1) together with equation (5) for #m. We recall the bifurcation 
properties of system (1): 

Proposition 3.4. Given the system 

= - , 7  + - -  4 2 - -  '7 2)  
dt 
d~ (6) 

- ~ + '1(Um - -  ~ - -  7 2 )  
dt 

then: 

1. For #m < 0, the origin is a stable fixed point. 
2. For t~m > 0, the origin becomes an unstable fixed point, while the 

circle ~ 2 + ~ 2 __ t~m is attracting and stable in a neighborhood of the 
origin of the combined phase space-parameter space R 2 x R. 

(See Howard, 1975; Marsden and McCracken, 1976.) 

Remark 3.5. We now go from A'(m) to the full system A(m); we make 
explicit all the variables that determine the value of the bifurcation parame- 
ters /~m- Only instead of simply giving the ranges of those variables, we 
present them through differential equations plus boundary conditions. 

The oscillators (3) plus freely defined boundary conditions give the 
range of the xl. Equation (4) allows us to introduce g into our equations, 
while equations (2) define the Yl as adequate trigonometric functions of the 
xi.Therefore everything below equations (1) has to do with parameter space. 

About system (2)-(3) we see that: 

�9 The whole system (2)-(3) is neutrally stable. 
�9 System (3) integrates to 

xi = A; sin t + B; cos t 

w~ = A~ cos t - B~ sin t 

�9 Systems (2)-(4) integrate to 

y~ = A~ sin ex~ + Bt cos exi 

z~ = A,- cos cx~ - B~ sin ex~ 

Therefore, systems (2)-(3) essentially describe a synchronized periodic 
motion on 82". We can make rotations in (x, w) and (y, z)  spaces so that 
the B~ = B~ = 0 and 

yi = A; sin cx~ 

Z i = A i COS CX i 
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The crucial point here is the following: given all admissible initial 
conditions for (3), the xi span the whole of <x> space as each one of them 
ranges over [-Ai ,  A~]. 

We can now state and prove the remaining assertion in Proposition 
3.2: 

Lemma 3.6. If #m > 0 sometimes, then the origin in A(m) is unstable. 

Proof. Consider system A'(m) for a fixed value #o > 0. Since the 
origin is unstable, given an adequately small open ball B around 0ell  2 
there will be a to so that, for t > to, an orbit 7"(# ~ t) for A'(m) escapes B. 

Now 7" is the projection of an orbit 7 for A. Choose the first to outside 
B so that 7'(# ~ to) = 7(Pro(to), to). Due to the synchronization of the xl, if 
T is their common period, for all reo~, 7(#m(to+rT), to+rT) will lie 
outside the open neighborhood of the origin B x B', where B' is a 
neighborbood of the origin in the remainder of the (product) phase 
space. �9 

The preceding remarks and results lead to the following: 

Proposition 3. 7. If #m < 0, then A(m) has a stable fixed point at the 
origin; if #m > 0, then equations (1) undergo a bifurcation, and the origin 
is unstabilized for  the whole system A(m). 

3.2. The Metamathematical Level 

The undecidability results go as follows, and arise out of the Matija- 
sevi6 result (Davis, 1982). First, an undecidability result on system A'(m): 

Proposition 3.8. If p is a universal Diophantine polynomial, then for 
the system given by A'(m) together with equation (5) and Yi = sin nxi, there 
is no general algorithm to decide whether a Hopf bifurcation occurs. 

Specifically: 

1. The set of values for m such that a Hopf bifurcation occurs is 
recursively enumerable. 

2. The complementary set of values for m such that the origin remains 
stable is productive. 

Proof. Immediate, from Corollary 2.5. [Essentially, we have substi- 
tuted in A'(m) the single parameters #m for a k-parameter family 
~m(...).] �9 

Proposition 3.9. There is a set of boundary conditions so that there is 
no general algorithm to decide, for an arbitrary m eco, whether the system 
(1) in A(m) (Example 3.1) goes through a bifurcation. 
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Proof. It will undergo a bifurcation if a parameter value #,, > 0 close 
to/~,, = 0 is allowed in the system. In Proposition 2.3 we put 

For p(m, x~ . . . . .  x.) as in that same proposition, we use Lagrange's 
= 2 (Davis, 1982). Now, if theorem and substitute x i 1 +p2 + q~ + r E + si 

we take p(m, . . .  ) to be a universal polynomial, Richardson's result implies 
that: 

�9 /~,~ > 0  if and only if there are natural numbers so that 
p(m . . . .  ) =0 .  

�9 #,, < 0 if and only if for no natural number p(m . . . .  ) = O. 

Now consider A(m). We add the boundary condition c (0)=  n to 
equation (4). Then equations (4)-(3)  define ~x~ as the argument for the 
oscillator equations (2). If  we now put Ai - 1, for all i = 1, 2 . . . . .  n, then 
equations (2)-(3)  define Richardson's transform as in Proposition 2.3. [We 
used Lagrange's theorem so that p(m, . . .  ) may be defined over the integers 
Z, and #m over the full reals.] 

Therefore the set {m: A(m) bifurcates} is recursively enumerable, but 
has a nonrecursive complement. [] 

Corollary 3.I0. For the boundary conditions in the previous proposi- 
tion, the set {m: A(m) bifurcates} is creative, and the set {m: A(m) does not 
bifurcate} is productive. 

Or: 

Corollary 3.1I. There is a set of boundary conditions so that there is 
no general algorithm to compute, for an arbitrary m ~o9, whether there are 
values of #,, so that the fixed point at the origin in A(m) becomes unstable. 

In other words: 

Corollary 3.12. For the boundary conditions in the preceding exam- 
pies, the set 

{m: A(m) has a stable origin} 

is productive, while the set 

{m: A(m) has an unstable origin} 

is creative. 

Corollary 3.13. There is no index j for a Turing machine Mj such that 
Mj takes as its input the coefficients of A(m) according to some prearranged 
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order  and  s tops and  prints  1 if  the origin remains  stable, and  prints  0 if  it 
can be unstabilized. 

P r o o f  I f  Mj exists, then we can  decide, for  each set o f  b o u n d a r y  
condi t ions in an a rb i t ra ry  A(m), whether  the b i furcat ion occurs  in system 
(1). Therefore  we would  end up  with the solut ion o f  the hal t ing p rob l em 
for  Mj(m).  �9 

3.3. Fermat's Conjecture and the Hopf Bifurcation 

Recall  tha t  there is a po lynomia l  over  the integers tha t  represents  
F e r m a t ' s  conjecture; such a po lynomia l  will have no solut ion a t  all over  
if  F e r m a t ' s  conjecture  is true a n d  will have  solut ions for  each set o f  na tura l  
numbers  (x ,  y, z, m )  tha t  falsifies that  conjecture.  [Recall  that  recently A. 
Wiles has claimed a p r o o f  o f  the T a n i y a m a  conjecture,  which implies 
F e r m a t ' s  (K.  Ribet ,  personal  communica t ion ,  1993; Stewart ,  1993); how- 
ever, the cons t ruc t ion  given here can be appl ied to  any  intractable  number -  
theoret ic  problem.]  

We  are now going to exhibit  explicitly one such polynomial .  In  order  
to do so, we need the D iophan t ine  character iza t ion  for  the exponent ia l  
relat ion v = u k, where v, u, and k are na tura l  numbers :  

Proposi t ion  3.14. v = u k if  and  only if  there are na tura l  numbers  
xl . . . . .  X2o such tha t  p(u,  k, v, x l ,  � 9  X2o) = 0, where  the po lynomia l  p 
over  the integers is given below: 

p ( u ,  k ,  v ,  x ~ ,  . . . , X 2 o )  

= [x~ - (x~ - 1)x] -- 1] 2 + [x] -- (x~ - 1)x~ - 1] 2 

+ [x~ -- (x 2 -- 1)x8 2 - 112 + (x5 - XgX3) 2 + [x7 -- (1 + 4X,oX3)] z 

+ [x~ - (x~ + x .  x4)] 2 + [x~ - (x~ + x~2x4)] ~ 

+ [x8 - k + 4(X13 - -  1)X3] 2 -'~ [X 3 - -  (k + X14 ) q- 1] 2 

+ {[xl - x3(x2 - u) - v] 2 - (x,5 - 1)2(2x2u - u 2 - 1)2} 2 

"~- IV + Xl6 - -  (2x2u - u 2 - 1)] 2 

"~ [X17 - -  (U "11- X18)] 2 + [X17 - -  (k  --~ x19)] 2 

+ [x ~, - ( x ~ 7 -  1 ) ( x , 7 -  1)~X~o- 112 

P r o o f  See Davis  (1982). �9 

We now write down the Diophan t ine  equa t ion  tha t  represents Fer-  
m a t ' s  conjecture: 
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P r o p o s i t i o n  3 .15 .  Fermat's conjecture is equivalent to the formal sen- 
tence below: 

V x ,  y ,  z ,  m Eco 7 3u,  v, w ,  rl , �9 �9 �9  sl , �9 �9 � 9  tx , �9 �9 �9 eco 

{ x ,  y ,  z > 1 ^ m > 2 ^ [p2 (x ,  m ,  u, r l ,  . . . , r2o) 

+ p 2 ( y ,  m ,  v, s l ,  . � 9  Szo) 

+ p 2 ( z ,  m ,  w ,  tl  . . . . .  t20) + (u + v -- w) 2 = 0]} 

or, equivalently, 

Vi, j ,  k ,  n e o ~ - 7 3 x ,  y ,  z ,  m ,  u, v, w ,  r~ . . . .  , s~ . . . . .  t l ,  �9  �9 eo~ 

{[p2(x, m ,  u, r l ,  . . . , rzo) + p 2 ( y ,  m ,  v, s~, . . . , S2o) 

+ p Z ( z ,  m ,  w ,  q . . . . .  tzo) + (u  + v - -  w)  2 

+ ( i  + 2 - x ) 2  + ( j  + 2 - y ) 2  + ( k  + 2 - z ) Z  + ( n  + 3 - m ) 2 = O ] }  

where p is given in Proposition 3.14. 

P r o o f .  Notice that (x + 2) "+3 + (y + 2) "+3 = (z + 2) "+3 is equiva- 
lent to 

3U, O, W ~(DU ~ X "  A V ~ y "  A W ~ Zm A U q-1) ~ W 

^ x = i + 2 A  y = j +  2 A z = k  + 2 A m = n +  3 

We then obtain the Diophantine equation that represents the above 
sentence, and add the quantifiers (Davis, 1982); the conditions on x, y, z, m 
avoid both the trivial solutions and the Pythagorean equation. �9 

We denote A(x, y, z, m) the version of A(m) associated to the Fermat 
system, and state: 

P r o p o s i t i o n  3 . I 6 .  There is a system A(x, y, z, rn) such that there will 
be an algorithm to check whether Fermat's conjecture is true if and only 
if there is an algorithm to verify that the origin in A(x, y ,  z ,  m )  is always 
stable, for every quadruple <x, y, z, m >. 

P r o o f .  First, put the polynomial described in Proposition 3.15 in the 
transform given by Proposition 2.3. Then obtain the corresponding 
#(x, y, z, rn) for the system described in Example 3.1. �9 

A detailed treatment of those relations between hard number-theo- 
retic questions and dynamical systems can be found in da Costa et  aL 

(1993a). 
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4. RELATED INCOMPLETENESS PHENOMENA 

From here on we formalize dynamical systems theory inside an 
adequate axiomatic first-order theory T (think of T ~ ZF plus the count- 
able Axiom of Choice). The actual axiomatization procedures are per- 
formed with the help of Suppes predicates and can be found in da Costa 
and Doria (1992a, 1993a). 

We suppose that T has a model M where arithmetic is standard. 
Therefore T is consistent under that assumption. From here on, whenever 
we refer to "standard models" we will be talking about those. 

We can prove about T: 

Proposition 4.1. There is a Diophantine polynomial p ( x ~ , . . . ,  Xk) 
such that M ~ "There are no natural numbers x ~ , . . . ,  xk such that p = 0," 
while T ~ "There are no natural numbers Xl . . . .  , xk such that p = 0" or 
T ~ "7(There  are no natural numbers x ~ , . . . ,  Xk such that p = 0)." 

That result (Davis, 1982) derives from a similar theorem by Post 
("Within an adequate consistent formalization for computation theory 
there is a Turing machine that never halts over a given input, but such that 
we cannot prove that fact within the formalization") and is related to the 
usual undecidability and incompleteness proofs in formalized arithmetic. 

A corollary follows: 

Corollary 4.2. There is an expression f ( x l  . . . . .  xg) ~[-~n ] u ] . . .  [ for 
a function in elementary analysis formalized inside T such that M ~ "For 
all x~ . . . . .  f ( x ~ , . . .  ) >  1," but such that T neither proves nor disproves 
that assertion. 

Therefore: 

Proposition 4.3. There is an m0~o9 such that M ~ "A(m0) does not 
undergo a Hopf bifurcation," but such that T can neither prove nor 
disprove that assertion. 

4.1. Fermat's Conjecture Revisited 

Our result on Fermat's conjecture and the nature of the fixed point for 
the corresponding system (Proposition 3.16) can be restated as: 

Proposition 4.4. T is such that T t- "Fermat's conjecture" if and only 
if, for all x, y, z, m, T ~- "The fixed point at the origin of A(x, y, z, m) is 
stable." 

4.2. Incompleteness Implies UndecidabiHty 

We conclude with another proof of the nonexistence of an algorithm 
that decides whether a given fixed point is stable: 
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Proposition 4.5. There is no general algorithm to decide, for an 
arbitrary polynomial dynamical system of dimension k ~ dim A(m) and of 
degree d > deg #r~ + 1, whether a fixed point is stable or not. 

Sketch of Proof. Since T can be any extension of ZFC, and since any 
such theory satisfies Proposition 4.3, the existence of one such algorithm 
would be incompatible with that proposition. �9 

Remark 4.6. Dimension k of A(m) ranges from 47 (out of a universal 
polynomial p of dimension equal to 11) coupled to a ridiculously high 
degree, to around 300 (for a universal polynomial p of dimension near 70) 
where the degree of the system is around 30. 

A discussion of those and related undecidability and incompleteness 
results can be found in da Costa and Doria (1991a) and Stewart (1991). 

5. CONCLUSION 

We have here a full undecidability and incompleteness result for 
polynomial dynamical systems that might undergo a Hopf-related bifurca- 
tion; and we have shown that in the present situation incompleteness 
implies undecidability. 

Several points should be raised here. The chief question has to do with 
the computability properties of continuous (nondiscrete) objects. Computa- 
tion theory is a theory about discrete objects and the way they are handled 
in mathematics. Dynamical systems are continuous, and so standard wis- 
dom suggests that in order to deal directly with their computability 
properties one should first extend our ideas about computability to contin- 
uous things. There are several possible approaches here; the oldest, for 
example, arises out of the definition of a "computable real" as an infinite 
computable sequence of digits. 

Our approach is very different, and stems from ideas in algebraic 
computation. Essentially one notices that an equation f ( x ~ , . . . ,  xn)= 0 
defined on R n and built out of elementary functions (polynomials, sines, 
exponentials, and the like) has in general an infinite number of solutions, 
even if n = 1. Richardson's map allows us to establish a correspondence 
between polynomials and some objects built out of elementary functions; 
we thus translate all the undecidability properties of Diophantine equations 
into the language of elementary function theory, which is classical real 
analysis. 

As in the case of algorithms, when we carefully distinguish between 
"algorithms" (computation procedures) and "algorithmic functions" (func- 
tions which are proved to have an algorithm), we must now separate 
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"expressions" (which we handle in our computations) from the functions 
that they represent. As all mathematics is formally presented through 
expressions, we are here simply emphasizing a point that tends to become 
blurred in less rigorous treatments. We can 'visualize' mathematical objects 
in several shapes, forms, and intuitions, but when we settle down to prove 
things about them, those shapes and forms collapse into strings of letters, 
which are the only available data we concretely have about the mathemat- 
ical universe. 

What Pertains to Dynamical Systems? 

Also, we have often heard that results such as the ones presented in 
this paper do not really belong to dynamical systems theory. Therefore we 
ask, what pertains to dynamical systems? "Strange attractors, stable mani- 
folds, bifurcations of vectorfields," is the usual answer--a well-known zoo 
whose exhibits play no essential part in our proofs. 

However, such an objection masks an epistemological prejudice and 
an unscientific belief. The prejudice is contained in the assertion, "a domain 
of knowledge is defined by the objects studied within that domain during a 
given historical period." It is enough to go through the history of physics 
to see the folly of such a conception; in mathematics a good example is the 
concept of "smoothness": smoothness (bien s~r, avant la lettre) was re- 
stricted to polynomials in the 17th and 18th centuries; then to analytic 
functions in the 19th century; then to C ~ objects in the first half of the 
20th century. Today one does nothing interesting about, say, spaces of 
metrics in general relativity if we do not add Sobolev spaces of functions to 
our collection of "smooth" functions. 

The unscientific belief was the hope that weird gizmos such as strange 
attractors should somehow be related to weird results such as Grdel's 
incompleteness theorems. There are some quite interesting explorations 
about that theme (Tomita, 1984); the idea is, say, that the onset of 
turbulence in a dynamical system has a strict parallel in the 'onset' of 
incompleteness in arithmetic when one goes from Pressburger arithmetic to 
full-fledged arithmetic. Yet we can see here that undecidability and incom- 
pleteness may be present when one considers a simple Hopf bifurcation. No 
turbulence, no strange attractors. 

The Canard and a Free Particle That Looks Chaotic 

Now consider the following situation: let's go through the usual 
nonstandard description of the canard (Albeverio et al., 1986, p. 33; see 
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also Chuaqui, 1991) in a dynamical system. A nonstandard model may be 
seen as arising out of  the following setting: we are given an axiomatic 
formulation for arithmetic which we then extend to our theory T, supposed 
consistent. We add to T an undecidable arithmetic statement; out of  that 
statement we can concoct a Diophantine equation p ( x ~ , . . . ,  xn) which has 
no roots in any standard model for T, but which has roots in some 
nonstandard models. We thus get our nonstandard model: it is one of the 
models where p = 0 for some (infinite) numbers. 

Now again out of  p we can obtain a function O(p) such that 0 = 1 if 
p has roots, and 0 = 0 if p has no roots. Let X represent a single free 
particle over an adequate R n and let Y represent a chaotic system on the 
same domain (da Costa and Doria, 1991a). Then 

Z = O(p)X + (1 - O(p))I" 

is chaotic in all standard models. Yet it equals a single free particle in our 
nonstandard model t. We can go through the beautiful nonstandard descrip- 
tion of  the canard in that model. But when we simulate the expression for 
Z on a computer screen, we get a tangled system which will pass the usual 
statistical tests for randomness. For  the elementary arithmetic portion of  a 
standard model is recursive, so that it will be simulated on a computer 
screen. 

Therefore consistency requires that when dealing with the nonstandard 
approach to physical systems we must be careful with the behavior of  those 
undecidable statements of  ours. They are essentially bifurcation points for 
theories, actually not very different from the bifurcation points in dynami- 
cal systems, as the construction described in this paper shows that a system 
may or may not undergo a phase transition, depending on the way one 
decides an undecidable statement. 

Conclusion 

Finally there is a remark attributed to S. Smale that results such as the 
present ones which show that undecidability and incompleteness are wide- 
spread in mathematics essentially imply that we must rethink our current 
views about the foundations of  mathematics. Mathematics should not be 
blamed for them; the trouble lies in the way we have straitjacketed it into 
formalism. 

Well, we fully agree with that remark. We go even further: a constant 
rethinking of  the foundations of  mathematics should be the rule. It is as if 
there could not be stable foundational views for mathematics; as if an 
everlasting shadow were always to protect the abyss. 
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